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Evolution and structure formation of the distribution of partition function zeros:
Triangular type Ising lattices with cell decoration
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The distribution of partition function zeros of the two-dimensional Ising model in the complex temperature
plane is studied within the context of triangular decorated lattices and their triangle-star transformations. Exact
recursion relations for the zeros are deduced for the description of the evolution of the distribution of the zeros
subject to the change of decoration level. In the limit of infinite decoration level, the decorated lattices
essentially possess the Sierpin´ski gasket or its triangle-star transformation as the inherent structure. The posi-
tions of the zeros for the infinite decorated lattices are shown to coincide with the ones for the Sierpin´ski gasket
or its triangle-star transformation, and the distributions of zeros all appear to be a union of infinite scattered
points and a Jordan curve, which is the limit of the scattered points.
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I. INTRODUCTION

Along with the intensive investigations of the two
dimensional Ising model defined on classical lattices such
the rectangular, triangular, and hexagonal lattices, some
tention has been paid to the model defined on more com
cated lattices. One of them is the spin model on hierarch
lattices @1–9#. These lattices are constructed as the infin
limit of a given decoration process which can be eithe
bond or a cell decoration. Diamond hierarchical lattice is
example of bond decorations. Starting with a bond, a d
mond hierarchical lattice is obtained by replacing the bo
by a diamond and then repeating the process iterativel
the infinite limit. On the other hand, Sierpin´ski carpet is an
example of cell decorations. Starting with a square, we
construct the hierarchical lattice of a Sierpin´ski carpet by
first dividing the square into nine equal squares, then pul
out the middle square, and finally repeating the process it
tively to the infinite limit. Since these lattices are decora
to the infinite level in a self-similar way, they are fract
lattices, and the thermodynamic limit is well defined for
physical system defined on these lattices.

Gerfen and co-workers investigated the Ising criticality
fractal lattices, including Koch curves, and Sierpin´ski gas-
kets and carpets, by means of the renormalization techn
@10–13#. These authors came to the conclusion that the ph
transition can occur at finite temperature only when the or
of ramification of a fractal lattice is infinite@11#. There also
exist some calculations on the partition functions of the Is
models on different fractal lattices embeded in two or th
dimensions, and the calculation results are consistent
the above conclusion@14,15#.

On the other hand, the interest about the geometric di
bution of the partition function zeroes has also been rai
after the classical works of Yang and Lee on regular latti
@16,17#. The Lee-Yang circle theorem states that, for the
tice gas in the thermodynamic limit, the zeros of the gra
partition function are continuously distributed on a u
1063-651X/2002/65~6!/066124~8!/$20.00 65 0661
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circle in the complex fugacity plane, and the zero located
the real axis represents the phase transition point@16,17#.
Fisher then studied the partition function zeros in the co
plex temperature plane, also referred as the Fisher zeros
the two-dimensional zero-field Ising model. He showed th
for the model defined on a square lattice, the zeros lie on
circles in the complex tanhh plane, whereh5J/kBT with
the spin-spin coupling strengthJ and the Boltzmann constan
kB @18#. In principle, by knowing the zeros of the partitio
function, we may deduce all the thermodynamic characte
tics of a system. Particularly, the distribution density of t
zeros near the phase transition point can be used to ex
the critical exponents@19–21#. For example, the logarithmic
singularity of the specific heat for the two-dimensional ze
field Ising model is the result of the linearly vanishing de
sity of the zeros near the real axis@18,21#.

In the efforts of understanding the distribution and stru
ture of the Fisher zeros, the zeros for the zero-fieldq-state
Potts model has also been calculated for several valuesq
on the regular@20,22# as well as hierarchical lattices@6,7#.
Among these results, due to the connection with the Julia
we have fairly complete information about the Fisher ze
of hierarchical models, including the multifractal structu
appearing in the distribution of the zeros and the charac
ization of the global scaling properties in this structu
@23–25#.

Fractal lattices can be viewed as the infinite limit of
certain type of hierarchical decorations starting with eithe
bond or a cell. Then, the renormalization approximation
Migdal @26# and Kadanoff@27# becomes exact, and the zero
of the (n21)th decoration level become the preimages
the renormalization map, which yield the zeros of thenth
level. Thus, the formation of the fractal structure in the d
tribution of the zeros can be realized via the gradual incre
of the decoration level toward the infinite limit. But, due
the fact that the number of the zeros is finite for a fin
decoration level, we cannot show how the fractal struct
emerges from the increase of the decoration level in a c
©2002 The American Physical Society24-1
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FIG. 1. ~a! A triangular lattice
consists of primary cells~shaded
region!. A primary cell is deco-
rated to~b! one level and~c! two
levels. Note thats1 , s2, and s3

are the corner spins and the othe
are inner spins.
d
in

s
ra
he
at
on
ac
o
ri
tio
th
la
e
o

sy
o

ng
io
la

la
de

i
e
e

ro

u
c
re

-

for
ig.
ed
in

ns,
e,
ex-
e
s the
the
ce,

5

we
by

l
is

ced
way. However, this can be improved if lattices possesse
well-defined thermodynamic limit for any decoration level
the passage toward a fractal lattice.

To construct a hierarchically decorated lattice that ha
well-defined thermodynamic limit for any degree of deco
tions, we can start with a classical regular lattice, and t
implement bond or cell decorations hierarchically to this l
tice to any desired degree. In the limit of infinite decorati
level, the decorated lattice essentially possesses the fr
lattice as the inherent structure. For decorated lattices c
structed in this way, they show lack of translational inva
ance, and the degree of inhomogeneity in the coordina
number of lattice sites can be indexed by the number of
decoration level. Thus, one may expect that this type of
tices may provide a very good frame to deepen our und
standing of physical systems such as random magnets, p
mers, and percolation clusters.

Using these decorated lattices, we attempt to give a
tematic study of the effect of inhomogeneity on the therm
dynamic behavior of the two-dimensional zero-field Isi
model. This is the first of two papers that study the evolut
and structure formation of the Fisher zeros on decorated
tices with an arbitrary decoration leveln (n lattice, hereaf-
ter!. In this paper, we study the model defined on a triangu
and hexagonal lattice with cell decorations, while the mo
on a rectangular lattice with bond decorations is studied
the second paper. We are interested in the following qu
tions.~i! How do the critical point and the distribution of th
Fisher zeros vary with the decoration leveln? ~ii ! How does
the fractal structure in the distribution of the Fisher ze
emerge from the increase of the decoration level?~iii ! Is
there any difference for the fractal structure in the distrib
tion of the Fisher zeros between a fractal lattice and a de
rated lattice with the fractal lattice as the inherent structu
The question of how the specific heat on ann lattice varies
with the decoration leveln will be discussed in other sepa
rated papers.
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II. FREE ENERGY

In this paper, two kinds of regular lattices are chosen
decoration: One is planar triangular lattice shown in F
1~a!, and the other is hexagonal lattice, which is obtain
from the last one by a triangle-star transformation shown
Fig. 2~a!. For the way of generating hierarchical decoratio
we adopt the rule depicted in Fig. 1 for a triangular lattic
and its corresponding triangle-star transformation to a h
agonal lattice is shown in Fig. 2. In the limit of infinit
decoration level, the decorated lattices essentially posses
Sierpiński gasket and its triangle-star transformation as
inherent structure for the triangular and hexagonal latti
respectively. The corresponding site numberNs

(n) and the
bond numberNb

(n) per unit cell of regular lattices~referred as
primary cell, hereafter! for the decoration leveln are (3n11

21)/2 and 3n11 for a triangular decorated lattice, and (
33n21)/2 and 3n11 for a hexagonal decorated lattice.

The general form of the partition function reads

Z5(
$s%

expS (
^ i , j &

zs is j D , ~1!

where the sum is over the nearest neighboring pairs^ i , j & on
a certain type of hierarchically decorated lattices. Here
consider uniform ferromagnetic couplings characterized
the dimensionless coupling parameterh, and the Ising spin
takes two possible valuess i561. Formally, the exponentia
part of Eq.~1! can be rewritten as simple products, and th
renders the partition function to be

Z52nsRnbQ, ~2!

with R5(12t2)21/2 and t5tanhh, wherens andnb are the
total site and bond numbers respectively, and the redu
partition functionQ takes the form of
y

al
n.

al
FIG. 2. ~a! A hexagonal lattice is obtained
from a triangle-star transformation. A primar
cell decorated to~b! one level and~c! two levels
in a triangular lattice is transferred to a hexagon
lattice through the triangle-star transformatio
Note thats1 ,s2, ands3 are the corner spins on
the corresponding primary cell of a hexagon
lattice.
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Q5S 1

2D ns

(
s561

H )̂
i , j &

~11ts is j !J . ~3!

The expression ofQ in all cases can be unified by mea
of the characteristic spin functional defined on a prima
cell, this formally leads to

Q5S 1

2D ns /Ns

(
s561

H )
cells

A1,2,3J ~4!

with

A1,2,35a1b~s1s21s2s31s3s1!, ~5!

where the product is taken over all the primary cells, the s
variables,s1 ,s2 ands3, are the corner spins on the prima
cell for the construction depicted in Figs. 1 and 2, anda and
b are certain defined functionals of the variablet. Note that
for the zero-field Ising model with the nearest neighbor
teractions, the characteristic spin functionalA1,2,3 always
takes bilinear form of the spin variables, and the functio
coefficients before three different spin-pairs are the same
the case of uniform couplings.

For the case of the zeroth order decoration, the co
sponding functional coefficients,a and b, in the character-
istic spin functionalA1,2,3 of Eq. ~4! can be calculated from
simple relations,

aT
(0)1bT

(0)~s1s21s2s31s3s1!

5~11ts1s2!~11ts2s3!~11ts3s1!, ~6!

aH
(0)1bH

(0)~s1s21s2s31s3s1!

5 1
2 (

s0

~11ts1s0!~11ts2s0!~11ts3s0!, ~7!

which yield

aT
(0)511t3, ~8!

bT
(0)5t ~11t !, ~9!

aH
(0)51, ~10!

bH
(0)5t2. ~11!

Here the subscriptsT and H denote the triangular and hex
agonal lattices, and superscripts with parenthesis denote
decoration level.

For a lattice with the decoration leveln, the functional
coefficientsa (n) andb (n) can be obtained through the recu
sion relations between two successive decoration levels
effective way of constructing these recursion relations is
patch three of the neighboring ancestor lattices together
then to complete the sum over the inner spins. In this c
struction, the characteristic spin functional at the decora
levels n,A1,2,3

(n) , can be expressed in terms of those at
decoration levelsn21,Ai , j ,k

(n21) , as
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A1,2,3
(n) 5S 1

2D 3

(
$s i ,s j ,sk%

$A1,i , j
(n21)Ai ,2,k

(n21)Aj ,k,3
(n21)%, ~12!

which appears to preserve the form of Eq.~5! after taking
averaged sums over the inner spins,s i , s j , andsk . Hence
the associated recursion relations of the functional coe
cients are given as

a (n)5~a (n21)!31~b (n21)!3, ~13!

b (n)5~b (n21)!2~a (n21)1b (n21)! ~14!

for both latticesT andH.
The above results indicate that the characteristic s

functionalA1,2,3
(n) does preserve its form as

A1,2,3
(n) 5a (n)1b (n)~s1s21s2s31s3s1! ~15!

in any decoration levelsn. Then the reduced partition func
tion for a lattice withn decoration levels takes the gener
form of

Q(n)5S 1

2D Ns
(n)

(
s561

H)
x,y

@a (n)1b (n)~sx,ysx11,y

1sx,ysx,y111sx11,ysx,y11!#J , ~16!

where the two-tuple (x,y) in the subscript of a spin variabl
denotes the position of an Ising spin located at one of
sites in a lattice with the zeroth order decoration.

Since, the reduced partition function of decorated lattic
stays unaltered up to certain well-defined functional coe
cients, the system is completely resolved, and the free en
can be easily written down according to the formal expr
sion of exact solution provided by Refs.@28–30#. The ex-
pression of the free energy per site perkBT can be written as
the sum of two parts,

f (n)5 f r
(n)1 f s

(n) , ~17!

where f r
(n) is the regular part,

f r
(n)52 ln 22

Nb
(n)

Ns
(n)

ln R, ~18!

and f s
(n) , coming from the reduced partition functionQ(n), is

the singular part,

f s
(n)5

21

2Ns
(n)E0

2pdf

2pE0

2p du

2p
ln@B0

(n)2B1
(n)Q~u,f!#,

~19!

with B0
(n) andB1

(n) defined as

B0
(n)5~a (n)!213~b (n)!2, ~20!
4-3
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FIG. 3. The quantityX(n), defined asX(n)

[b (n)/a (n), as a function oft decreases rapidly
to zero as the decoration leveln increases for
triangular~black! and hexagonal~gray! decorated
lattices, with n50,2,4,6 and 10 form left to
right.
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(n)52@a (n)b (n)2~b (n)!2#, ~21!

andQ(u,f) defined as

Q~u,f!5cosu1cosf1cos~u2f!. ~22!

It is interesting to consider the lattice formed by an is
lated primary cell with the decoration leveln, which leads to
a conventional fractal lattice in the limit of infiniten. After
summing over the three corner spinss1 , s2, and s3, we
obtain the singular part of the free energy density as

f s,cell
(n) 52

1

Ns
(n)

lna (n). ~23!

On the other hand, by introducing new variablesX(n)

[b (n)/a (n), we can rewrite the singular part of the free e
ergy density given by Eq.~19! as

f s
(n)5

21

2Ns
(n) @2 lna (n)1C(n)~ t !#, ~24!

whereC(n)(t) is the result of the integration defined as

C(n)~ t !5E
0

2pdf

2pE0

2p du

2p
ln$~113X(n)!

22@X(n)2~X(n)!2#Q~u,f!%. ~25!

Then, by comparing Eq.~24! with Eq. ~23! we know that the
quantityC(n)(t) signifies the contribution to the free energ
density from the correlations among different primary ce

From the recursion relations of Eqs.~13! and~14!, we can
obtain the recursion relation ofX(n) as

X(n)5
~X(n21)!2

12X(n21)1~X(n21)!2
. ~26!

This map between two succesive decoration levels has
fixed points, one atXf51 is repulsive and the other atXf
50 is attractive. Note that we can determine a fixed po
Xf51 or 0, to be repulsive or attractive by directly obser
06612
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ing that the value ofX(n) is a decreasing sequence in th
increase of the decoration levelsn for a given t value be-
tween 0 and 1. Hence, the increase of the decoration leven
will decrease the value ofX(n) down to X(n)50 for any t
value except the pointt51 that corresponds to the repulsiv
fixed pointXf51. This feature is shown in Fig. 3. Hence, w
have the integration resultC(n)(t) of Eq. ~25! vanish in the
range 0,t,1 for the infinite decoration level, and then th
free energy density of Eq.~24! is the same as that of th
decoupled primary cells.

Thus, decorations play the role of weakening the corre
tions among the primary cells, and eventually there is
phase transition at finite temperature when the decora
levelsn is sufficiently large.

III. CRITICAL POINT

In view of the dimensionless free energy density given
Eq. ~19!, the bulk critical temperature for the ferromagne
phase transition is determined by the condition@28,30#

B0
(n)23B1

(n)5
c

0, ~27!

where, for convenience, we use the notation,5
c

, to denote
the equivalence established only at the critical temperat
In principle, Eq.~27! has to be converted into the relations
the variablet and to be solved with respect to the variablet
for a lattice with decoration levelsn. But as the decoration
level goes higher, the relevant functionals,B0

(n)andB1
(n) , be-

come extremely complicated in the variablet, and it is not
easy to determine the critical temperature accurately. Th
fore, we consider seeking an analytical way to reformul
the critical condition of Eq.~27!.

In view of the recursion relations of Eqs.~13! and ~14!,
we can introduce more appropriate variables to manage
critical condition. For the ratio of the functional coefficient
Y(n)[1/X(n)5a (n)/b (n), the recursion relation take the form
of

Y(n)~ t !5Y(n21)~ t !@Y(n21)~ t !21#11. ~28!
4-4
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FIG. 4. The critical pointskBTc /J vs the
decoration leveln for triangular~black! and hex-
agonal~gray! decorated lattices.
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Then, in terms of the new variableY, the critical condition of
Eq. ~27! can be reduced to the form of

Y(n)~ t !5
c

h(0), ~29!

with h(0)53.
To solve the critical condition of Eq.~29!, first we use Eq.

~28! to rewrite it as

Y(n21)~ t !@Y(n21)~ t !21#115
c

h(0), ~30!

which, in general, has two roots,

Y(n21)~ t !5
c

1
2 ~16A4h(0)23!. ~31!

However, one of the solutions, (12A4h(0)23)/2, must be
disregarded due to the fact that this root appears to be n
tive in the physical region, 0,t,1, while the left hand side
of Eq. ~31! is essentially positive definite for the ferroma
netic couplings. Then we can rewrite Eq.~29! as

Y(n21)~ t !5
c

h(1), ~32!

with h(1)(t)5(11A4h(0)23)/2. Hence, by further reduc
tions we can expect

Y(n2 i )~ t !5
c

h( i ), ~33!

with

h( i )5 1
2 ~11A4h( i 21)23!, ~34!

for 1< i<n.
When Eq.~33! is applied to a lattice with decoration lev

els n, this equation with anyi value in the range 1< i<n is
equivalent to Eq.~29!, and this equivalence can be viewed
a kind of renormalization scheme for the critical point su
ject to the size changing inside the lattice. It correspond
rescaling the system to the low momentum limit when thi
value increases.

Then the critical value of the hyperbolic tangential fun
tion tc5tanhhc, and hence the critical temperature, can
06612
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determined by solving Eq.~33! for any i value. The most
convenient way of doing this is to handle the last express
of Eq. ~33!

Y(0)5
c

h(n), ~35!

sinceY(0) is a simple function oft for both latticesT andH
andh(n) is a constant number regardless of then value. By
using the recursion relation of Eq.~34! with the initial h(0)

53, we can obtain the constant valueh(n) for any decoration
level n. Then, for the decoration leveln we solve Eq.~35!
with Y(0)5(12t1t2)/t for the latticeT to obtain the critical
point tc,T as

tc,T5
~h(n)11!2A~h(n)13!~h(n)21!

2
, ~36!

and with Y(0)51/t2 for the latticeH to obtain the critical
point tc,H as

tc,H5
1

Ah(n)
. ~37!

The numerical values oftc,T and tc,H versus the decoration
level n are shown in Fig. 4.

As stated above, the critical point can be determined
solving Eq.~35! in conjunction with the recursion relation o
Eq. ~34!. Thus, for the case ofn approaching infinity, in
order to determine the corresponding critical temperature
have to know the asymptotic behavior of the functionh(n) as
n goes to`. Concerned with the sequence built up by t
functionsh(n) of increasingn, one may find that the value
decrease uniformly for anyt value of interest. On the othe
hand, we recall that allh( i )’s must be strictly real and posi
tive according to the construction of Eq.~33! and the physi-
cal requirement. Thus,h(n) stays positive and it is bounde
below, accumulation points do exist and they can be obtai
via a fixed point equation

h(`)5 1
2 ~11A4h(`)23!, ~38!

which yieldsh(`)51 for both latticesT andH.
4-5
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By virtue of Eqs. ~36! and ~37!, direct substitution of
h(`)51 leads to the resulttc,T5tc,H51 for the infinite deco-
ration level. Therefore, we may conclude that there are
phase transitions at finite temperatures for these cases
this result is consistent with the conclusion given by Ger
et al.

IV. PARTITION FUNCTION ZEROS

In this section, we focus on the distribution of the Fish
zeros for an arbitraryn lattice and how the fractal structur
emerge in the distribution for the limit of infiniten. In gen-
eral, the Fisher zeros can be obtained by simply setting
argument of the logarithm in the singular part of the fr
energy density of Eq.~19! equal to zero. In terms of the
variableY(n), Eq. ~19! takes the form of

f s
(n)5

21

2Ns
(n) X2 lnb (n)1E

0

2pdf

2pE0

2p du

2p
ln$@31~Y(n)!2#

22~Y(n)21!Q~u,f!% C. ~39!

Thus, the distribution of the zeros can be resolved as a u
of the solutions from the two conditions as

@31~Y(n)!2#22~Y(n)21!Q~u,f!50 ~40!

and

b (n)50. ~41!

Concerned with Eq.~40!, we observe that the range of th
function Q(u,f) is 23/2<Q(u,f)<3. For that 21
<Q(u,f)<3, the condition of Eq.~40! is equivalent to
uY(n)21u52, which corresponds to a circle of radius 2 wi
the center being located at 1 on theY(n) complex plane. On
the other hand, the range of23/2<Q(u,f)<21 gives the
line segment@23,0# on the real axis. Hence, the solution
Eq. ~40! leads to the distribution of the zeros as a circle p
a line segment on theY(n) complex plane for ann lattice as
shown in Fig. 5~a!. It is worthwhile to note that this result i
consistent with the results for 0 lattice obtained elsewh
@19,21#.

However, for an effective comparison of the distributio
of the zeros given at any decoration level, the plots had
ter to be brought to the complex plane of an unique varia
Y(0), which corresponds to different function oft for the
latticesT andH. To achieve this, we notice that knowing th
zeros distribution on theY(n) complex plane we can obtai
the distribution on theY(0) complex plane by performing th
inverse map of Eq.~28!, given as

Y(n21)5
1

2
6

A4Y(n)23

2
, ~42!

consecutivelyn times. We also notice that on theY(0) com-
plex plane, as a consequence of the Lee-Yang theo
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@16,17#, the critical point, given byY(0)5h(n), corresponds
to the only zero located at the physical region 1,Y(0),`
with real Y(0) for an n lattice.

On theY(n) complex plane, the distribution of the zero
for ann-lattice, obtained from Eq.~40!, is a circle and a line
segment, and there is an intersection point between the c
and the line segment located at the pointY(n)5(21,0). As is
depicted in Fig. 5~b!, after the first inverse map, the circl
shrinks but remains closed, whereas the line segment s
into two curved segments that intersect with the closed cu
at the points determined by the inverse map of the last in
section (21,0). The resultant distribution, which is the unio
of a closed curve and two curved segments, has the s
inversion symmetry about the symmetric centerY(n21)

5(0.5,0). For convenience, we shall call the closed curve
(n21) cycle and, in this sense, the original circle can
named asn cycle.

Proceeding with the second inverse map, as shown in
5~c!, the (n21) cycle further shrinks to another close
curve, the (n22) cycle, meanwhile, the two curved se
ments split into four shortened ones. Therefore, the resul
pattern for the zeros in the complexY(n22) plane possesse
the (n22) cycle as well as the four curved segments. He
the distribution maintains the space inversion symme
about the point (0.5,0), and the four intersections betw
the (n22) cycle and the four segments are the result
points of the inverse map, given by Eq.~42!, of the two

FIG. 5. The distribution of the partition function zeros on th
Y(0) complex plane obtained from the solution of Eq.~40! for the
decoration level~a! n50, ~b! n51, ~c! n52, and~d! n58.
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intersections between the (n21) cycle and the two curved
segments on theY(n21) complex plane.

In general, for ann lattice, the distribution of the zero
subject to the solutions of Eq.~40! is the union of an (n
2 i ) cycle and 2i separated curved segments on theY(n2 i )

complex plane. In this distribution, there are 2i intersection
points between the (n2 i ) cycle and 2i separated curved seg
ments, and these intersections are the results of the inv
map, given by Eq.~42!, of the 2( i 21) intersections between
the @n2( i 21)# cycle and 2i 21 separated curved segmen
on theY[n2( i 21)] complex plane. In addition, this distribu
tion has the space inversion symmetry about the symme
center (0.5,0).

Then, it is obvious that for ann lattice, the distribution of
the zeros on theY(0) complex plane contains a 0 cycle an
2n segments, and this 0 cycle is a continuous curve tha
characterized by its 2n intersection point with 2n segments.
For sufficiently largen, the lengths of the 2n segments be-
come tiny and the 2n intersection points turns out to dom
nate the 0 cycle, as depicted in Fig. 5~d! for the case ofn
58. In the limit wheren tends to infinity, these segmen
have shrunk to the 2n points which then solely determine th
0 cycle. Therefore, for ann lattice with n approaching the
infinity, the solution of Eq.~40! gives the distribution of the
zeros in the complexY(0) plane as the set of infinite point
for both T andH structures. Owing to the fact that the ma
given by Eq.~28!, up to a constant translation, can be ide
tified as one of the rational maps,z→z21c with c51/4, this
set of infinite points, which is also referred as the Jord
curve in the literature, is a Julia set@31#. For reference, we
also show the zeros distribution from the solution of Eq.~40!
on thet complex plane forT structure in Fig. 6~a! and forH
structure in Fig. 6~b!, both with the decoration leveln58.

For the condition of Eq.~41!, b (n)50, because of the
definition ofB1

(n) given by Eq.~21! this condition essentially
leads toB1

(n)50, and, hence,B0
(n)50 by virtue of the condi-

tion for the zeros,B0
(n)2B1

(n)Q(u,f)50. Therefore, Eq.
~41!, actually, impliesa (n)5b (n)50 as a consequence o
B0

(n)5 B1
(n)50. Using the recursion relations~13! and ~14!,

we obtain two coditions,Y(n21)521 and a (n21)5b (n21)

50, which are equivalent to the conditiona (n)5b (n)50 for

FIG. 6. The distribution of the partition function zeros on thet
complex plane obtained from Eq.~40! for ~a! triangular and~b!
hexagonal decorated lattices with the decoration leveln58.
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an n lattice. By continuing the reduction always along th
branch a (m)5b (m)50, eventually we can decompose th
condition for the zeros, Eq.~41!, into the following:

Y(n2 i )521, for i 51, . . . ,n, ~43!

and

a (0)5b (0)50. ~44!

The last condition cannot be satisfied for latticeH, and it
implies t521 or Y(0)523 for lattice T. Hence, for ann
lattice the condition of Eq.~41! yields the zeros on
the Y(0) complex plane as the union of the poi
(23,0) ~this point is absent for latticeH!, the points obtained
from the result of performing the inverse map, given by E
~42!, n21 times successively for the point21, and all the
preimages in thosen21 times inverse maps.

Recall that for the solution of Eq.~40!, the pointY(n21)

5(21,0) is the intersection point between the (n21) cycle
and the line segment on theY(n21) complex plane for a (n
21) lattice. For the case of infiniten, this point generates al
the points of the Julia set on theY(0) complex plane through
the inverse map of Eq.~42! consecutively. Thus, for the cas
of infinite n, the solution of Eq.~40! is a subset of the solu
tion of Eq. ~41!, and the distribution of the zeros is sole
determined by the condition of Eq.~41!. This result is con-
sistent with the conclusion we obtained from the comparis
of the singular part of the free energy density between an
lattice and a isolated primary cell with the decoration leven,
namely, decorations play the role of weakening the corre
tions among the primary cells.

By combining the solutions of Eqs.~40! and~41! together,
we may conclude that for ann lattice the Fisher zeros in th
complexY(0) plane consist of a 0 cycle, 2n separated curved
segments that intersect the 0 cycle at different points de
mined by then times inverse map of the point (21,0), and
the scattered points including the point (23,0), which is
absent for latticeH, the points obtained from the result o
performing the inverse map of Eq.~42! n21 times succes-
sively for the point (21,0), and all the preimages in thos
n21 times inverse maps.

V. SUMMARY

In summary, an exact cell-renormalization transformat
were constructed and used to study the critical points and
Fisher zeros for the Ising model on triangular type lattic
with cell decorations. We exactly locate the critical point f
an n lattice with arbitrayn, and show that there is no phas
transition at finite temperature for the infinite decorati
level. For the distribution of the Fisher zeros, we choos
unique variable as the variable of complex temperature,
then we bring the zeros distributions for lattices with diffe
ent decoration levels to this complex plane so that the p
terns of the distributions can be compared with each ot
The pattern first appears as a union of a circle and a
segment for lattices without decorations. Then, as the de
ration level increases, the pattern gradually evolves to a
of scattered points limited by a Jordan curve in the limit
4-7
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infinite decoration level. By direct construction of the evol
tion process, we can show the emergence of the fractal s
ture of the Jordan curve in a clear way. We also show that
Sierpiński gasket essentially possesses the same distribu
of the zeros as the triangular lattice with the inherent str
ture of the Sierpin´ski gasket. This is shown to be due to th
fact that each primary cell tempts to factorize from the s
ys

s.

tt

ys

06612
c-
e

on
-

-

tem when the decoration levels increase, and a complete
torization occurs in the limit of infinite decoration levels.
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